Multiple collisions in turbulent flows.
نویسندگان
چکیده
In turbulent suspensions, collision rates determine how rapidly particles coalesce or react with each other. To determine the collision rate, many numerical studies rely on the ghost collision approximation (GCA), which simply records how often pairs of point particles come within a threshold distance. In many applications, the suspended particles stick (or in the case of liquid droplets, coalesce) upon collision, and it is the frequency of first contact which is of interest. If a pair of "ghost" particles undergoes multiple collisions, the GCA may overestimate the true collision rate. Here, using fully resolved direct numerical simulations of turbulent flows at moderate Reynolds number (Re(λ)=130), we investigate the prevalence and properties of multiple collisions. We find the probability P(N(c)) for a given pair of ghost particles to collide N(c) times to be of the form P(N(c))=βα(N(c)) for N(c)>1, where α and β are coefficients which depend upon the particle inertia. We also investigate the statistics of the times that ghost particles remain in contact. We show that the probability density function of the contact time is different for the first collision. The difference is explained by the effect of caustics in the phase space of the suspended particles. We demonstrate that, as a result of multiple collisions, the GCA leads to a small, but systematic overestimate of the collision rate, which is of the order of ∼15% when the particle inertia is small, and slowly decreases when inertia increases.
منابع مشابه
Overview of Direct Numerical Simulation of Particle Entrainment in Turbulent Flows
An overview of removal and re-entrainment of particles in turbulent flows is presented. The procedure for the direct numerical simulation (DNS) of the Navier-Stokes equation via a pseudospectral method for simulating the instantaneous fluid velocity field is described. Particle removal mechanisms in turbulent flows in a duct are examined and effects of the near-wall coherent eddies on the parti...
متن کاملEffects of coupling on turbulent gas-particle boundary layer flows at borderline volume fractions using kinetic theory
This study is concerned with the prediction of particles’ velocity in a dilute turbulent gas-solidboundary layer flow using a fully Eulerian two-fluid model. The closures required for equationsdescribing the particulate phase are derived from the kinetic theory of granular flows. Gas phaseturbulence is modeled by one-equation model and solid phase turbulence by MLH theory. Resultsof one-way and...
متن کاملApplication of the Schwarz-Christoffel Transformation in Solving Two-Dimensional Turbulent Flows in Complex Geometries
In this paper, two-dimensional turbulent flows in different and complex geometries are simulated by using an accurate grid generation method. In order to analyze the fluid flow, numerical solution of the continuity and Navier-Stokes equations are solved using CFD techniques. Considering the complexity of the physical geometry, conformal mapping is used to generate an orthogonal grid by means of...
متن کاملColliding particles in highly turbulent flows
We discuss relative velocities and the collision rate of small particles suspended in a highly turbulent fluid. In the limit where the viscous damping is very weak, we estimate the relative velocities using the Kolmogorov cascade principle. PACS numbers: 05.20.Dd Kinetic theory 45.50.Tn Collisions 47.27.-i Turbulent flows 47.57.ESuspensions Introduction. This paper considers collisions of small...
متن کاملA hybrid approach for simulating turbulent collisions of hydrodynamically-interacting particles
A hybrid direct numerical simulation (DNS) approach is proposed for simulating turbulent collisions of hydrodynamically-interacting particles, under the assumptions that the disturbance flows due to particles are very localized in space and there is a sufficient length-scale separation between the particle size and the Kolmogorov scale of the undisturbed turbulent flow. The approach consists of...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical review. E, Statistical, nonlinear, and soft matter physics
دوره 88 6 شماره
صفحات -
تاریخ انتشار 2013